Handout: Exploring the Power Rule for Derivatives

Discussions 201, 203 // 2018-10-01

The power rule for derivatives states that if $f(x)=x^{n}$, its derivative is given by

$$
f^{\prime}(x)=n x^{n-1}
$$

First, we make a few notes about this law. One of the most useful and immediate corollaries is that it tells us how to compute the derivative of any polynomial:

$$
\begin{aligned}
f(x) & =a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0} \\
f^{\prime}(x) & =n a_{n} x^{n-1}+(n-1) a_{n-1} x^{n-2}+\cdots+a_{1}
\end{aligned}
$$

(This is because the derivative of a sum is the sum of the derivatives.)
Actually, the power law holds even when n is not a whole number. Indeed, the rule is valid for any exponent n, whether it be $n=3 / 2$ or $n=-1.57$ or $n=0 \ldots$
Exercise 1. Check the last of these—namely, that the derivative of $f(x)=x^{0}$ is indeed given correctly by the power law.
There is a subtle point pertaining to domains that arises in using the exponent law with more exotic choices of n, however-a subtlety that arose in a homework problem on Homework 5.

The example you saw on the homework was $f(x)=x^{3 / 2}$, whose derivative according to the power law is $f^{\prime}(x)=\frac{3}{2} x^{1 / 2}$. While this is true, it is slightly misleading for the following reason: the domain of f is \qquad , the domain of $\frac{3}{2} x^{1 / 2}$ is $\xrightarrow[\begin{array}{c}\text { interval } \\ \text { law-but only where it exists! }\end{array}]{ }$, but the domain of $f^{\prime}(x)$ is only \qquad . Thus it would be more accurate to say that $f^{\prime}(x)$ is given by the power interval

Exercise 2. Find all values of n for which the function $f(x)=x^{n}$ meets each of the following conditions:
(1) Both $f(x)$ and $f^{\prime}(x)$ have domain \mathbb{R}.
(2) Both $f(x)$ and $f^{\prime}(x)$ have domain $(-\infty, 0) \cup(0, \infty)$.
(3) $f(x)$ has domain \mathbb{R} but $f^{\prime}(x)$ has domain $(-\infty, 0) \cup(0, \infty)$.
(4) $f(x)$ has domain $[0, \infty)$ but $f^{\prime}(x)$ has domain $(0, \infty)$.

Why is it impossible for both $f(x)$ and $f^{\prime}(x)$ to have domain $[0, \infty)$?
The rest of this worksheet will be dedicated to exploring another phenomenon of the power law.
Exercise 3. Does there exist a function $f(x)=c x^{n}$, for some constants c and n, such that $f^{\prime}(x)=x^{-1}=1 / x$?
Exercise 4. Compute the derivative of the function $f(x)=1000 x^{0.001}-1000$. If you have a graphing calculator, graph $y=f(x)$ for x in the interval $[0,10]$. Does this look like another function you've seen before?

Exercise 5. Define F_{α} (for a fixed number $\alpha>0$) to be the function

$$
F_{\alpha}(x)=\frac{1}{\alpha}\left(x^{\alpha}-1\right)
$$

For example, the function considered in the previous problem would be called $F_{0.001}$. Compute F_{α}^{\prime}. What happens to F_{α}^{\prime} as you let α approach 0 ?

Exercise 6. In the previous problem you were asked to think about what happens to F_{α}^{\prime} as α approaches 0 . In this problem, we'll consider what happens to F_{α}. That is to say, consider the function F defined as the "limit of the functions F_{α} ":

$$
F(x)=\lim _{\alpha \rightarrow 0^{+}} F_{\alpha}(x)=\lim _{\alpha \rightarrow 0^{+}} \frac{x^{\alpha}-1}{\alpha}
$$

Write out the equation of $F(x)$. (In other words: compute the above limit in terms of x. Hint: we've done it before.)
It is in fact true that $F^{\prime}(x)=1 / x$ (for $x>0$), but what we've done so far doesn't actually constitute a "proof" of this fact. (An actual proof using implicit differentiation is actually quite short and can be found at the start of $\$ 3.6$ in the text. We'll see it in lecture later.)

