Math 1A: Calculus

Handout: Exploring the Power Rule for Derivatives

The power rule for derivatives states that if $f(x) = x^n$, its derivative is given by

$$f'(x) = nx^{n-1}.$$

First, we make a few notes about this law. One of the most useful and immediate corollaries is that it tells us how to compute the derivative of any polynomial:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

$$f'(x) = na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \dots + a_1$$

(This is because the derivative of a sum is the sum of the derivatives.)

Actually, the power law holds even when *n* is not a whole number. Indeed, the rule is valid for *any* exponent *n*, whether it be n = 3/2 or n = -1.57 or n = 0...

Exercise 1. Check the last of these—namely, that the derivative of $f(x) = x^0$ is indeed given correctly by the power law.

There is a subtle point pertaining to domains that arises in using the exponent law with more exotic choices of *n*, however—a subtlety that arose in a homework problem on Homework 5.

The example you saw on the homework was $f(x) = x^{3/2}$, whose derivative according to the power law is $f'(x) = \frac{3}{2}x^{1/2}$. While this is true, it is slightly misleading for the following reason: the domain of f is ______, the domain of $\frac{3}{2}x^{1/2}$ is

, but the domain of f'(x) is only _____. Thus it would be more accurate to say that f'(x) is given by the power law_but only where it exists!

Exercise 2. Find all values of *n* for which the function $f(x) = x^n$ meets each of the following conditions:

- (1) Both f(x) and f'(x) have domain \mathbb{R} .
- (2) Both f(x) and f'(x) have domain $(-\infty, 0) \cup (0, \infty)$.
- (3) f(x) has domain \mathbb{R} but f'(x) has domain $(-\infty, 0) \cup (0, \infty)$.
- (4) f(x) has domain $[0, \infty)$ but f'(x) has domain $(0, \infty)$.

Why is it impossible for both f(x) and f'(x) to have domain $[0, \infty)$?

The rest of this worksheet will be dedicated to exploring another phenomenon of the power law.

Exercise 3. Does there exist a function $f(x) = cx^n$, for some constants *c* and *n*, such that $f'(x) = x^{-1} = 1/x$?

Exercise 4. Compute the derivative of the function $f(x) = 1000x^{0.001} - 1000$. If you have a graphing calculator, graph y = f(x) for x in the interval [0,10]. Does this look like another function you've seen before?

Exercise 5. Define F_{α} (for a fixed number $\alpha > 0$) to be the function

$$F_{\alpha}(x)=\frac{1}{\alpha}(x^{\alpha}-1)$$

For example, the function considered in the previous problem would be called $F_{0.001}$. Compute F'_{α} . What happens to F'_{α} as you let α approach 0?

Exercise 6. In the previous problem you were asked to think about what happens to F'_{α} as α approaches 0. In this problem, we'll consider what happens to F_{α} . That is to say, consider the function *F* defined as the "limit of the functions F_{α} ":

$$F(x) = \lim_{\alpha \to 0^+} F_{\alpha}(x) = \lim_{\alpha \to 0^+} \frac{x^{\alpha} - 1}{\alpha}.$$

Write out the equation of F(x). (In other words: compute the above limit in terms of x. Hint: we've done it before.)

It is in fact true that F'(x) = 1/x (for x > 0), but what we've done so far doesn't actually constitute a "proof" of this fact. (An actual proof using implicit differentiation is actually quite short and can be found at the start of §3.6 in the text. We'll see it in lecture later.)